Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Genome Res ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918959

RESUMEN

Point mutations within the TERT promoter are the most recurrent somatic noncoding mutations identified across different cancer types, including glioblastoma, melanoma, hepatocellular carcinoma, and bladder cancer. They are most abundant at -146C > T and -124C > T, and rarer at -57A > C, with the latter originally described as a familial case, but subsequently shown also to occur somatically. All three mutations create de novo E26-specific (ETS) binding sites and result in activation of the TERT gene, allowing cancer cells to achieve replicative immortality. Here, we used a systematic proteomics screen to identify transcription factors preferentially binding to the -146C > T, -124C > T, and -57A > C mutations. Although we confirmed binding of multiple ETS factors to the mutant -146C > T and -124C > T sequences, we identified E4F1 as a -57A > C-specific binder and ZNF148 as a TERT wild-type (WT) promoter binder that showed reduced interaction with the -124C > T allele. Both proteins are activating transcription factors that bind specifically to the -57A > C and WT (at position 124) TERT promoter sequence in corresponding cell lines, and up-regulate TERT transcription and telomerase activity. Our work describes new regulators of TERT gene expression with possible roles in cancer.

2.
Elife ; 92020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985974

RESUMEN

APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.


Asunto(s)
Citidina Desaminasa/genética , Factores de Transcripción E2F/genética , Antígenos de Histocompatibilidad Menor/genética , Transducción de Señal , Citidina Desaminasa/metabolismo , Factores de Transcripción E2F/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Antígenos de Histocompatibilidad Menor/metabolismo , Unión Proteica
3.
PLoS Pathog ; 13(10): e1006681, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29045464

RESUMEN

HIV1-TAT interactive protein (TIP60) is a haploinsufficient tumor suppressor. However, the potential mechanisms endowing its tumor suppressor ability remain incompletely understood. It plays a vital role in virus-induced cancers where TIP60 down-regulates the expression of human papillomavirus (HPV) oncoprotein E6 which in turn destabilizes TIP60. This intrigued us to identify the role of TIP60, in the context of a viral infection, where it is targeted by oncoproteins. Through an array of molecular biology techniques such as Chromatin immunoprecipitation, expression analysis and mass spectrometry, we establish the hitherto unknown role of TIP60 in repressing the expression of the catalytic subunit of the human telomerase complex, TERT, a key driver for immortalization. TIP60 acetylates Sp1 at K639, thus inhibiting Sp1 binding to the TERT promoter. We identified that TIP60-mediated growth suppression of HPV-induced cervical cancer is mediated in part due to TERT repression through Sp1 acetylation. In summary, our study has identified a novel substrate for TIP60 catalytic activity and a unique repressive mechanism acting at the TERT promoter in virus-induced malignancies.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Proteínas de Neoplasias/metabolismo , Elementos de Respuesta , Factor de Transcripción Sp1/metabolismo , Telomerasa/biosíntesis , Neoplasias del Cuello Uterino/metabolismo , Femenino , Células HeLa , Histona Acetiltransferasas/genética , Humanos , Lisina Acetiltransferasa 5 , Proteínas de Neoplasias/genética , Factor de Transcripción Sp1/genética , Telomerasa/genética , Neoplasias del Cuello Uterino/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA